admin 发表于 2016-5-24 00:06:00

NASA的太阳风暴可能已经在地球上生命的关键

<a href="data/attachment/portal/201605/24/000700ez7ez06p9ua0pmme.jpg"><img src="data/attachment/portal/201605/24/000700ez7ez06p9ua0pmme.jpg"></a><div><br></div><div><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="Our sun's adolescence was stormy—and new evidence shows that these tempests may have been just the key to seeding life as we know it." data-dst="我们的太阳的青春期被暴风雨和新的证据表明,这些风暴可能只是去播种我们所知道的生命的关键。" style="box-sizing: border-box; background: transparent;">我们的太阳的青春期被暴风雨和新的证据表明,这些风暴可能只是去播种我们所知道的生命的关键。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="Some 4 billion years ago, the sun shone with only about three-quarters the brightness we see today, but its surface roiled with giant eruptions spewing enormous amounts of solar material and radiation out into space. These powerful solar explosions may have provided the crucial energy needed to warm Earth, despite the sun's faintness. The eruptions also may have furnished the energy needed to turn simple molecules into the complex molecules such as RNA and DNA that were necessary for life. The research was published in Nature Geoscience on May 23, 2016, by a team of scientists from NASA." data-dst="40亿年前,太阳只有约四分之三的今天我们看到的亮度,但其表面造成巨大的喷出的大量太阳物质和辐射到太空。这些强大的太阳爆发可能需要温暖地球的关键能源提供,尽管太阳的模糊。火山喷发也可能有需要将简单分子到复杂的分子,如RNA和DNA是生命所必需的能量。这项研究发表在自然地球科学2016年5月23日,一支由美国宇航局的科学家。" style="box-sizing: border-box; background: rgb(196, 243, 191);">40亿年前,太阳只有约四分之三的今天我们看到的亮度,但其表面造成巨大的喷出的大量太阳物质和辐射到太空。这些强大的太阳爆发可能需要温暖地球的关键能源提供,尽管太阳的模糊。火山喷发也可能有需要将简单分子到复杂的分子,如RNA和DNA是生命所必需的能量。这项研究发表在自然地球科学2016年5月23日,一支由美国宇航局的科学家。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="Understanding what conditions were necessary for life on our planet helps us both trace the origins of life on Earth and guide the search for life on other planets. Until now, however, fully mapping Earth's evolution has been hindered by the simple fact that the young sun wasn't luminous enough to warm Earth." data-dst="了解什么样的条件是我们星球上的生命必要的帮助我们追踪地球上生命的起源和引导搜寻其他行星上的生命。直到现在,然而,完全映射地球进化已被那个年轻的太阳不发光足以温暖地球的简单的事实阻碍了。" style="box-sizing: border-box; background: rgb(196, 243, 191);">了解什么样的条件是我们星球上的生命必要的帮助我们追踪地球上生命的起源和引导搜寻其他行星上的生命。直到现在,然而,完全映射地球进化已被那个年轻的太阳不发光足以温暖地球的简单的事实阻碍了。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="" back="" then,="" earth="" received="" only="" about="" 70="" percent="" of="" the="" energy="" from="" sun="" than="" it="" does="" today,"="" said="" vladimir="" airapetian,="" lead="" author="" paper="" and="" a="" solar="" scientist="" at="" nasa's="" goddard="" space="" flight="" center="" in="" greenbelt,="" maryland.="" "that="" means="" should="" have="" been="" an="" icy="" ball.="" instead,="" geological="" evidence="" says="" was="" warm="" globe="" with="" liquid="" water.="" we="" call="" this="" faint="" young="" paradox.="" our="" new="" research="" shows="" that="" storms="" could="" central="" to="" warming="" earth.""="" data-dst="“那时,地球只收到约百分之70的来自太阳的能量比它今天所做的,”弗拉迪米尔说airapetian,论文的第一作者、美国宇航局哥达德太空飞行中心的绿地,马里兰州太阳能科学家。”这意味着地球已经结冰的球。相反,地质证据说这是一个温暖的地球液态水。我们称这种微弱的年轻的太阳悖论。我们的新研究表明,太阳风暴会一直变暖的地球的中心。”" style="box-sizing: border-box; background: transparent;">“那时,地球只收到约百分之70的来自太阳的能量比它今天所做的,”弗拉迪米尔说airapetian,论文的第一作者、美国宇航局哥达德太空飞行中心的绿地,马里兰州太阳能科学家。”这意味着地球已经结冰的球。相反,地质证据说这是一个温暖的地球液态水。我们称这种微弱的年轻的太阳悖论。我们的新研究表明,太阳风暴会一直变暖的地球的中心。”</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="Scientists are able to piece together the history of the sun by searching for similar stars in our galaxy. By placing these sun-like stars in order according to their age, the stars appear as a functional timeline of how our own sun evolved. It is from this kind of data that scientists know the sun was fainter 4 billion years ago. Such studies also show that young stars frequently produce powerful flares – giant bursts of light and radiation -- similar to the flares we see on our own sun today. Such flares are often accompanied by huge clouds of solar material, called coronal mass ejections, or CMEs, which erupt out into space." data-dst="科学家能够拼凑出太阳的历史,寻找在我们的银河系类似的恒星。通过将这些像太阳一样的恒星,根据他们的年龄,星星出现在我们自己的太阳形成了功能时间表。正是从这种科学家知道太阳是微弱的40亿年前的数据。这样的研究还表明,年轻明星频频产生强大的耀斑–光辐射大爆发,今天在我们自己的太阳,我们看到的耀斑相似。发作往往伴随着巨大的太阳物质云,称为日冕物质抛射,或日冕物质抛射,它喷发到太空。" style="box-sizing: border-box; background: transparent;">科学家能够拼凑出太阳的历史,寻找在我们的银河系类似的恒星。通过将这些像太阳一样的恒星,根据他们的年龄,星星出现在我们自己的太阳形成了功能时间表。正是从这种科学家知道太阳是微弱的40亿年前的数据。这样的研究还表明,年轻明星频频产生强大的耀斑–光辐射大爆发,今天在我们自己的太阳,我们看到的耀斑相似。发作往往伴随着巨大的太阳物质云,称为日冕物质抛射,或日冕物质抛射,它喷发到太空。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="NASA's Kepler mission found stars that resemble our sun about a few million years after its birth. The Kepler data showed many examples of what are called " superflares"="" –="" enormous="" explosions="" so="" rare="" today="" that="" we="" only="" experience="" them="" once="" every="" 100="" years="" or="" so.="" yet="" the="" kepler="" data="" also="" show="" these="" youngsters="" producing="" as="" many="" ten="" superflares="" a="" day."="" data-dst="美国宇航局的开普勒发现的星星,就像我们的太阳大约几万年诞生后。开普勒的数据表明,所谓的超级耀斑的巨大爆炸–今天如此罕见,我们只经历一次每100年或如此多的例子。然而,开普勒的数据还显示,这些年轻人一天生产十superflares一样多。" style="box-sizing: border-box; background: transparent;">美国宇航局的开普勒发现的星星,就像我们的太阳大约几万年诞生后。开普勒的数据表明,所谓的超级耀斑的巨大爆炸–今天如此罕见,我们只经历一次每100年或如此多的例子。然而,开普勒的数据还显示,这些年轻人一天生产十superflares一样多。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="While our sun still produces flares and CMEs, they are not so frequent or intense. What's more, Earth today has a strong magnetic field that helps keep the bulk of the energy from such space weather from reaching Earth. Space weather can, however, significantly disturb a magnetic bubble around our planet, the magnetosphere, a phenomenon referred to as geomagnetic storms that can affect radio communications and our satellites in space. It also creates auroras – most often in a narrow region near the poles where Earth's magnetic fields bow down to touch the planet." data-dst="而我们的太阳产生耀斑和日冕物质抛射,他们不那么频繁或强烈的。更重要的是,今天的地球有强大的磁场,使大量的能源等空间天气到达地球。空间天气,但明显干扰围绕着地球的磁层的磁泡,这种现象称为磁暴可以影响无线电通信和卫星在空间。它还创建了极光–最常在两极,地球磁场跪拜触摸星球附近的狭窄区域。" style="box-sizing: border-box; background: transparent;">而我们的太阳产生耀斑和日冕物质抛射,他们不那么频繁或强烈的。更重要的是,今天的地球有强大的磁场,使大量的能源等空间天气到达地球。空间天气,但明显干扰围绕着地球的磁层的磁泡,这种现象称为磁暴可以影响无线电通信和卫星在空间。它还创建了极光–最常在两极,地球磁场跪拜触摸星球附近的狭窄区域。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="Our young Earth, however, had a weaker magnetic field, with a much wider footprint near the poles." data-dst="我们年轻的地球,然而,有一个较弱的磁场,与更广泛的足迹两极附近。" style="box-sizing: border-box; background: transparent;">我们年轻的地球,然而,有一个较弱的磁场,与更广泛的足迹两极附近。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="" our="" calculations="" show="" that="" you="" would="" have="" regularly="" seen="" auroras="" all="" the="" way="" down="" in="" south="" carolina,"="" says="" airapetian.="" "and="" as="" particles="" from="" space="" weather="" traveled="" magnetic="" field="" lines,="" they="" slammed="" into="" abundant="" nitrogen="" molecules="" atmosphere.="" changing="" atmosphere's="" chemistry="" turns="" out="" to="" made="" difference="" for="" life="" on="" earth.""="" data-dst="“我们的计算表明,你会经常看到极光的所有方式,在南卡罗来纳州,说:”airapetian。”并从空间天气沿着磁场线的粒子,它们会撞上丰富的氮分子在大气中。改变大气的化学变成了所有地球上的生命的差异。”" style="box-sizing: border-box; background: transparent;">“我们的计算表明,你会经常看到极光的所有方式,在南卡罗来纳州,说:”airapetian。”并从空间天气沿着磁场线的粒子,它们会撞上丰富的氮分子在大气中。改变大气的化学变成了所有地球上的生命的差异。”</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="The atmosphere of early Earth was also different than it is now: Molecular nitrogen – that is, two nitrogen atoms bound together into a molecule – made up 90 percent of the atmosphere, compared to only 78 percent today. As energetic particles slammed into these nitrogen molecules, the impact broke them up into individual nitrogen atoms. They, in turn, collided with carbon dioxide, separating those molecules into carbon monoxide and oxygen." data-dst="早期地球的大气也不同于现在:氮分子–就是两个氮原子结合在一起成一个分子–由大气百分之90,仅比今天的百分之78。当高能粒子撞上这些氮分子,影响了他们成单个氮原子。他们,反过来,二氧化碳分子相撞,分离成一氧化碳和氧气。" style="box-sizing: border-box; background: transparent;">早期地球的大气也不同于现在:氮分子–就是两个氮原子结合在一起成一个分子–由大气百分之90,仅比今天的百分之78。当高能粒子撞上这些氮分子,影响了他们成单个氮原子。他们,反过来,二氧化碳分子相撞,分离成一氧化碳和氧气。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="The free-floating nitrogen and oxygen combined into nitrous oxide, which is a powerful greenhouse gas. When it comes to warming the atmosphere, nitrous oxide is some 300 times more powerful than carbon dioxide. The teams’ calculations show that if the early atmosphere housed less than one percent as much nitrous oxide as it did carbon dioxide, it would warm the planet enough for liquid water to exist." data-dst="自由浮动的氮和氧结合成氧化亚氮,这是一种强大的温室气体。当涉及到大气变暖,氧化亚氮是二氧化碳的300倍。团队的计算表明,如果早期大气容纳少于百分之一多氧化亚氮是二氧化碳,它将温暖的行星足够的液态水的存在。" style="box-sizing: border-box; background: transparent;">自由浮动的氮和氧结合成氧化亚氮,这是一种强大的温室气体。当涉及到大气变暖,氧化亚氮是二氧化碳的300倍。团队的计算表明,如果早期大气容纳少于百分之一多氧化亚氮是二氧化碳,它将温暖的行星足够的液态水的存在。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="This newly discovered constant influx of solar particles to early Earth may have done more than just warm the atmosphere, it may also have provided the energy needed to make complex chemicals. In a planet scattered evenly with simple molecules, it takes a huge amount of incoming energy to create the complex molecules such as RNA and DNA that eventually seeded life." data-dst="这一新发现的不断涌入太阳粒子对地球早期可能已经不仅仅是温暖的氛围,也可能需要进行复杂的化学物质提供的能量。在一个星球上分散均匀,简单的分子,它需要大量的能量来创建复杂的分子,如RNA和DNA,最终生命的种子。" style="box-sizing: border-box; background: transparent;">这一新发现的不断涌入太阳粒子对地球早期可能已经不仅仅是温暖的氛围,也可能需要进行复杂的化学物质提供的能量。在一个星球上分散均匀,简单的分子,它需要大量的能量来创建复杂的分子,如RNA和DNA,最终生命的种子。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="While enough energy appears to be hugely important for a growing planet, too much would also be an issue -- a constant chain of solar eruptions producing showers of particle radiation can be quite detrimental. Such an onslaught of magnetic clouds can rip off a planet's atmosphere if the magnetosphere is too weak. Understanding these kinds of balances help scientists determine what kinds of stars and what kinds of planets could be hospitable for life." data-dst="当足够的能量似乎越来越多的行星是非常重要的,太多了也会成为一个问题,一个恒定的太阳喷发产生的粒子辐射阵雨链可以是相当不利的。这样一个进击的磁云可以撕掉一颗行星的大气层如果磁场太弱。了解这种平衡可以帮助科学家们确定哪些明星和哪些行星可能适宜生命。" style="box-sizing: border-box; background: transparent;">当足够的能量似乎越来越多的行星是非常重要的,太多了也会成为一个问题,一个恒定的太阳喷发产生的粒子辐射阵雨链可以是相当不利的。这样一个进击的磁云可以撕掉一颗行星的大气层如果磁场太弱。了解这种平衡可以帮助科学家们确定哪些明星和哪些行星可能适宜生命。</trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="Some 4 billion years ago, the sun shone with only about three-quarters the brightness we see today, but its surface roiled with giant eruptions spewing enormous amounts of solar material and radiation out into space. These powerful solar explosions may have provided the crucial energy needed to warm Earth, despite the sun's faintness. The eruptions also may have furnished the energy needed to turn simple molecules into the complex molecules such as RNA and DNA that were necessary for life. The research was published in Nature Geoscience on May 23, 2016, by a team of scientists from NASA." data-dst="40亿年前,太阳只有约四分之三的今天我们看到的亮度,但其表面造成巨大的喷出的大量太阳物质和辐射到太空。这些强大的太阳爆发可能需要温暖地球的关键能源提供,尽管太阳的模糊。火山喷发也可能有需要将简单分子到复杂的分子,如RNA和DNA是生命所必需的能量。这项研究发表在自然地球科学2016年5月23日,一支由美国宇航局的科学家。" style="box-sizing: border-box; background: rgb(196, 243, 191);"></trans></p><p style="box-sizing: border-box; margin: 0px 0px 15px; -webkit-font-smoothing: inherit; line-height: 1.4em; font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background-color: rgb(255, 255, 255);"><trans data-src="" we="" want="" to="" gather="" all="" this="" information="" together,="" how="" close="" a="" planet="" is="" the="" star,="" energetic="" star="" is,="" strong="" planet's="" magnetosphere="" in="" order="" help="" search="" for="" habitable="" planets="" around="" stars="" near="" our="" own="" and="" throughout="" galaxy,"="" said="" william="" danchi,="" principal="" investigator="" of="" project="" at="" goddard="" co-author="" on="" paper.="" "this="" work="" includes="" scientists="" from="" many="" fields="" --="" those="" who="" study="" sun,="" stars,="" planets,="" chemistry="" biology.="" working="" together="" can="" create="" robust="" description="" what="" early="" days="" home="" looked="" like="" –="" where="" life="" might="" exist="" elsewhere.""="" data-dst="“我们想收集所有这些信息,一个行星的恒星的距离有多近,星星是多么精力充沛,多么强大的行星的磁层是为了帮助周围的宜居行星靠近自己的恒星在银河系的搜索,”威廉说,丹池,在哥达德的项目和合作者本文主要研究人员。”这项工作包括科学家从众多的领域,那些研究太阳、恒星、行星、生物化学与分子生物学。我们一起可以创造一个强大的描述是我们星球的早期,像–,生命可能存在的地方。”" style="box-sizing: border-box; background: transparent;">“我们想收集所有这些信息,一个行星的恒星的距离有多近,星星是多么精力充沛,多么强大的行星的磁层是为了帮助周围的宜居行星靠近自己的恒星在银河系的搜索,”威廉说,丹池,在哥达德的项目和合作者本文主要研究人员。”这项工作包括科学家从众多的领域,那些研究太阳、恒星、行星、生物化学与分子生物学。我们一起可以创造一个强大的描述是我们星球的早期,像–,生命可能存在的地方。”</trans></p></div><div><br></div>
页: [1]
查看完整版本: NASA的太阳风暴可能已经在地球上生命的关键