多个粒子在超级神冈探测器中产生的多个切伦科夫环。 图片来源:UC Irvine
研究人员通过仔细分析、筛选探测器记录的各种信号,将最后无法归结于其他反应的一些事例设为质子或中子衰变的候选事例,并用它们来计算质子或中子寿命的下限值。在上个世纪 80 年代,科学家已经给出了质子衰变为正电子及 π 介子的寿命下限, 1.7×10^32 年,这超过了最小 SU(5) 模型所预言的质子寿命,所以也意味着最简单的大统一模型并不能正确地给出质子寿命。
2017 年,超级神冈探测器已经将质子衰变为正电子及 π 介子的寿命下限提高到 1.6×10^34 年。但在这之前,其他类型的大统一理论也相继被提出,例如最小超对称 SU(5) 模型,Flipped SU(5) 模型以及 SO(10) 模型等等,它们可以给出长达 10^35 年的质子寿命,长于目前实验给出的下限值。因此,这些理论模型仍需实验的进一步检验。
值得指出的是,虽然神冈实验的最初目的是寻找质子衰变,但至今仍未明确观测到相关信号,不过它在中微子研究领域成果丰硕。1985 年,神冈探测器发现 μ 子中微子与电子中微子的比例比理论预言的要小,从而发现所谓的“大气中微子反常”现象。1987 年,神冈探测器第一次探测到大麦哲伦星系中超新星爆发(SN1987A)产生的超新星中微子,证实了超新星爆发理论的正确性,并开启了中微子天文学时代。小柴昌俊也因此荣获 2002 年诺贝尔物理学奖。1998 年,超级神冈探测器首次探测到大气中微子的振荡,使得梶田隆章荣获 2015 年的诺贝尔物理学奖。此外,该探测器还发现了地球中微子及反中微子的振荡现象。 前路漫漫
时至今日,质子衰变仍然没有被明确地观测到。那么,质子究竟会衰变吗?当下,各种大统一理论给出的质子寿命不尽相同,使得质子衰变实验缺乏非常清晰的目标:质子的寿命也许刚刚超出当前探测器的探测范围,也许远远超过当前探测器的探测范围。
当然,我们可以通过改进探测器进一步提高质子寿命的下限值,但也不可能永远这样发展下去。质子寿命的下限越高,我们所需的探测设备就越大,造价也会越高,同时背景干扰也越来越多,而这些可能会彻底掩盖质子衰变的信号。
尽管问题仍然悬而未决,但找寻质子衰变的意义十分重大。首先,观测到质子衰变将是实验物理学的巨大成就。其次,质子衰变植根于宇宙的基本规律等深层次问题,如果得以发现,我们便可以明确地知道重子数并不守恒,并依此来检验大统一理论,间接地研究超高能量下的物理。当然,质子是否衰变也会决定星体、星际物质的演化乃至我们整个宇宙的命运。
参考文献
1。 Search for proton decay via p→e+π0 and p→μ+π0 in 0.31??megaton·years exposure of the Super-Kamiokande water Cherenkov detector, The Super-Kamiokande Collaboration, Phys。 Rev。 D 95, 012004 (2017)。
2。 Search for nucleon decay into charged antilepton plus meson in 0.316 megaton · years exposure of the Super-Kamiokande water Cherenkov detector, The Super-Kamiokande Collaboration, Phys。 Rev。 D 96, 012003 (2017)。
3。 The Decay of the Proton, Steven Weinberg, Scientific American (1981)。
4。 The Search for Proton Decay, M。 LoSecco, Frederick Reines and Daniel Sinclair, Scientific American (1985)。
5。 The Search for Proton Decay, Frank Close, Nature 292 (1981)。
6。 H。 Georgi and S。 L。 Glashow, Unity of All Elementary Particle Forces, Phys。 Rev。 Lett。 32, 438 (1974)。