您还未登录! 立即登录
积分: 0
消息
提醒
设置
我的帖子
首页
发帖
账号
自动登录
找回密码
密码
登录
立即注册
只需一步,快速开始
手机号码,快捷登录
登录
立即登录
立即注册
其他登录
QQ
微信
闲聊
首页
Portal
分类
BBS
资讯
图片
视频
圈子
Group
导读
标签
发现
搜索
搜索
热搜:
外空
太空
航天
本版
文章
帖子
用户
帖子
收藏
勋章
任务
相册
留言板
门户
导读
排行榜
设置
我的收藏
退出
0
0
0
返回列表
两个黑洞合并为何如此困难?也许是动摩擦惹的祸
[ 复制链接 ]
发布新帖
tunvsr
高级会员
402
主题
-2
回帖
994
积分
高级会员
高级会员, 积分 994, 距离下一级还需 6 积分
高级会员, 积分 994, 距离下一级还需 6 积分
积分
994
私信
黑洞
637
0
2018-8-10 08:41:59
物理学家认为黑洞合并时会产生引力波,这在这张艺术家绘制的概念图中也有所体现。
北京时间8月10日消息,据国外媒体报道,天文界也可以发生经典的浪漫故事:两个黑洞相遇了,彼此之间立即产生了吸引力。它们围着对方跳起舞来,越转越近,直到……
直到什么?就像任何爱情故事一样,一到了这个阶段,问题便会应运而生。
爱因斯坦的广义相对论最先提出了对黑洞的预测。黑洞就像时空中的无底洞,像一口引力之井。任何事物都无法从中逃脱,就连光线也不例外。小型黑洞的质量只有
太阳
的几倍,像地雷一样静静埋伏在宇宙的各个角落。而超大质量黑洞则占据着各个星系的核心位置,如吸尘器一般、将周围的物体尽数吸入。这些巨型黑洞的质量高达太阳的数亿倍。天文学家认为,它们是由一系列星系合并形成的。在宇宙早期,可能有数十个、甚至数百个星系纷纷聚集到一起,形成了如今的局面。
“根据我们对宇宙结构形成过程的认识,小星系会合并成大星系,大星系又会合并成更大的星系。”美国俄亥俄州奥柏林学院物理学家罗伯特·欧文(Robert Owen)解释道。每次合并都要经历数亿年、甚至更久,因此我们无法直接观察到这一过程。但理论学家可以通过计算机模拟重现整个合并过程。
麻烦就出在这里。物理学家运行模拟时,两个正在合并的星系中央的黑洞竟然卡住了。黑洞极少会正面相撞。由于它们相遇时的路径不同,受角动量守恒的影响,它们会旋转着靠近对方。受彼此的引力吸引,两个黑洞会越挨越近,直到之间仅剩1秒差距(秒差距:天文学单位,约合3光年),二者却又像羞涩的恋人一样,不肯再靠近一步了。
为何会这样呢?欧文打了个比方:把你的手想象成其中一个黑洞。把手放在一桶水中,让水旋转起来,就像正在合并的星系物质一样。水一开始会阻碍手的运动,迫使手的速度减慢。在太空中,这种引力作用名叫动摩擦,会降低黑洞的角动量,导致其逐渐向另一个黑洞移动。但过了一会儿,水的旋转方向便会与你的手保持一致了,因此手受到的阻力也会减小。而在模拟的星系合并过程中,恒星和其它天体也会根据两个黑洞的旋转方向改变运动路径。此时动摩擦逐渐减小,两个黑洞也就在新轨道上稳定了下来,不会再改变位置。
若物理学家对宇宙的形成过程理解无误,这样成对的黑洞最终应当会彼此相撞、融为一体才对。但要实现这一点,它们必须先设法减去足够的能量,才能继续靠近对方、跨过最后这1秒差距。一旦两个黑洞靠得非常近之后(仅相隔几十亿公里,约0.001秒差距),根据广义相对论,剩下的角动量便会随着不断加强的引力波逐渐消失,将两个黑洞推到一起。这一过程可能会经历几小时、几天、甚至几年不等,具体取决于黑洞质量有多大。
究竟是什么力量推动了这一“致命拥抱”呢?这便是所谓的“最后的1秒差距问题”。解答该问题不仅是为了满足我们的好奇心,还可改变我们对宇宙结构形成过程的理解、以及对引力本质的认识。因此在物理学家模拟黑洞运行的同时,天文学家也在观察夜空,试图找到黑洞解决“最后的1秒差距问题”的线索——假如它们真能解决的话。
在过去的30年间,天文学家已经发现了数百个含有两个超大黑洞的星系,且这些黑洞处在不同的合并阶段。但即使是“最亲密的”一对黑洞,彼此之间也隔了几千秒差距。“要找到比这还近的黑洞就困难得多了。”加州理工学院计算科学家马修·格雷厄姆(Matthew Graham)指出。就算是
地球
上最大的望远镜,也达不到这么高的分辨率。
因此格雷厄姆和同事们决定走一条间接路线,利用闪烁的类星体光线进行观测。脉冲星是巨大、古老的星系极为明亮的内核部分。物质围绕星系中央的超大质量黑洞旋转时,会逐渐累积成一个圆盘状结构。这个圆盘的角动量会将其部分质量转化为辐射,使星系发出耀眼的光芒。由于气体和尘埃落入圆盘时并不连贯,类星体的光芒也会随之变化不定。
但2013年末,科学家却发现了一个与众不同的类星体。格雷厄姆和同事们利用“卡塔琳娜实时瞬变调查”10年来收集的数据,找到了一个奇特的信号来源,竟有着可以预测的变化规律。这个类星体名为PG 1302-102,距地球约35亿光年。它似乎会稳定地变亮、再变暗,每隔五年半便重复一次,就好像有人在慢慢操控亮度控制开关一样。
天文学家已经发现了一些正处在合并过程中的成对星系,如图中的NGC 4676。
是什么造成了这种循环呢?格雷厄姆表示:“我们提出了四五种不同的物理解释。”比如说,另一个超大质量黑洞的运行可能会定期改变该类星体辐射的朝向,或者可能使尘埃盘中旋转的物质发生扭曲,从而使其亮度发生周期性变化。这些解释都有一点共同之处:只有当类星体PG 1302-102中央的黑洞的确由两个黑洞构成时,才可以说得通。
距格雷厄姆和同事们估计,如果类星体PG 1302-102中央的确存在双黑洞系统,两者间隔可能只有0.01秒差距。另一项由哥伦比亚大学开展的研究甚至提出了更小的猜测,仅有0.001秒差距,约相当于太阳系的直径。到了这种程度,两个黑洞应当已经在“宽衣解带”(脱掉的其实是引力波),就差没扑进对方怀中了。只要研究人员读取的PG 1302-102信号无误,那么无论是哪种情况,都能说明同一个问题:大自然已经解决了“最后的1秒差距问题”。
格雷厄姆和同事们目前已在卡塔琳娜项目数据库中找到了100多个可能包含双黑洞系统的类星体,两个黑洞之间的距离都远小于1秒差距。若这些猜测得到证实,科学家便可对这场“合并大戏”神秘的最终章来一次“惊鸿一瞥”。
然而,要想弄清相隔很近的两个黑洞是如何离开稳定轨道、实现最终合并的,也许还需要我们以全新的方式看待宇宙。“我们现在只是借电磁波瞎试探而已。”欧文这样描述科学家们利用传统望远镜寻找双黑洞系统的做法。从理论上来说,黑洞合并释放出的能量应相当于超新星爆发的1亿倍,但这些能量全都以引力波、而非光线的形式存在。“我们要学会用‘眼睛’去‘听’,就好像通过鼓面的振动判断鼓在发声、而不是通过鼓声来判断一样。”
通过引力波观察黑洞合并可以使情况清晰明了许多。“从星系中央发出的光线往往会被气体和尘埃云吸收、重新发射、或者散射开来,导致我们看到的情景昏暗而扭曲。”加州理工学院与马克斯·普朗克射电天文学研究所的天体物理学家基娅拉·明加雷利(Chiara Mingarelli)解释道,“而引力波则不受气体和尘埃影响,可以径直穿过。”
然而,探测引力波也绝非易事。引力波天文学尚在起步阶段,况且就连LIGO这样的顶级天文台敏感度也不够高,无法探测到天文学家怀疑双黑洞系统合并时发出的、缓慢振荡的引力波。
因此研究人员决定换一种途径,利用大自然提供的“望远镜”——毫秒脉冲星进行探测。这种天体是恒星爆炸后留下的“遗骸”,密度极高、转个不停。它们就像海面上的浮标一样,以原子钟般的精确度,定期向地球发射一道射电波。当遥远星系中的两个黑洞正在跨越最后的1秒差距时,产生引力波可对这些毫秒脉冲星发出的信号造成干扰。因此通过观察银河系中数十个毫秒脉冲星的信号变化,天文学家便能判断它们是否受到了引力波的影响。
这些射电波的光谱特征将提供一系列重要数据,帮助物理学家测试或完善黑洞合并模型。威斯康星大学密尔沃基分校研究生约瑟夫·西蒙(Joseph Simon)指出:“要想了解两个黑洞在跨越最后1秒差距时究竟发生了什么,弄清这位终极‘幕后推手’的身份,脉冲星测时阵列是我们唯一可用的工具。”
而就算探测不到引力波,也可作为一条重要线索。西蒙指出,历经了将近十年的计时,脉冲星测时阵列的敏感度“终于达到了足够高的水平,就算什么都没探测到,也能透露一些重要信息。”这些测时阵列至今一无所获,说明理论学家对黑洞跨过最后1秒差距后经历的猜想可能存在误区。黑洞的部分能量也许不会以引力波的形式发散出去,而是通过与邻近恒星和气体的某种未知相互作用消散掉了。也许黑洞会将接近自己的恒星远远甩出,或者黑洞的引力会使周围的尘埃气体盘发生扭转。若物理学家能弄清这种能量消散机制,也许就能解释黑洞是如何跨过最后这1秒差距的了。
物理学家的精心计算将使他们有机会检验爱因斯坦的预言。正如欧文所说:“我们谈起广义相对论时,就好像它已经被彻底验证了一样。”但科学家还从未在黑洞合并这样的极端引力事件中检验过该理论。此类事件与牛顿物理法则相去甚远,我们熟悉的能量、动量和质量等概念也失去了原本的意义。假如黑洞合并发出的引力波的确比广义相对论预言的弱,也许是时候该做些修改了。
了解黑洞“爱情故事”的最终目的还是为了更好地认识地球,弄清我们所处的引力波环境究竟是一片“汪洋大海”,还是一条“涓涓细流”。欧文指出:“这其实是两种截然不同的‘时空海洋’,一个风平浪静,一个波涛汹涌。”(叶子)
新浪网
点赞
0
收藏
0
回复
举报
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
立即登录
点评
高级模式
本版积分规则
回帖并转播
回帖后跳转到最后一页
返回
浏览过的版块
航天
图片
木星
中国航天
地球
天体物理
天文理论
天文知识
首页
分类
资讯
发现
我的