您还未登录! 立即登录
积分: 0
消息
提醒
设置
我的帖子
首页
发帖
账号
自动登录
找回密码
密码
登录
立即注册
只需一步,快速开始
手机号码,快捷登录
登录
立即登录
立即注册
其他登录
QQ
微信
闲聊
首页
Portal
分类
BBS
资讯
图片
视频
圈子
Group
导读
标签
发现
搜索
搜索
热搜:
外空
太空
航天
本版
文章
帖子
用户
帖子
收藏
勋章
任务
相册
留言板
门户
导读
排行榜
设置
我的收藏
退出
0
0
0
返回列表
碳卫星是怎样“炼”成的
[ 复制链接 ]
发布新帖
bdrmo
论坛元老
3454
主题
-14
回帖
7431
积分
论坛元老
论坛元老, 积分 7431, 距离下一级还需 9992568 积分
论坛元老, 积分 7431, 距离下一级还需 9992568 积分
积分
7431
私信
航天
532
0
2017-5-28 23:27:51
碳卫星很小,但它却是我国迄今为止观测模式最复杂的民用卫星,它通过多种观测模式的组合,让碳排放无处遁形。
碳卫星工程总体副总指挥龚建村表示,要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率二氧化碳探测仪。别小看这个二氧化碳探测仪,它可是监测碳排放的主力,采用大面积衍射光栅对吸收光谱进行细分,最高分辨率达0.04nm,如此高的分辨率在国内光谱仪器上尚属首次。
科学家将这项操作类比检查人的指纹,普通仪器只看得到纹理,而二氧化碳探测仪可以把指纹放大100倍,精细地测量每条指纹的宽度和深度。
要实现这些核心指标可不是一件容易的事情。科学家们既需要对观测和定标进行巧妙的设计,还需要能做出极高的衍射效率和面型精度大面积全息光栅。据中科院长春光机所研究员郑玉权介绍,为突破探测仪上的关键技术,科研人员从最基础的、制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难点,最终在SiC基底上制造出高精度衍射光栅,并在航空校飞试验中进行了验证。
二氧化碳探测仪与其他很多星载光学载荷不同,为提高两个红外通道的信噪比、保证光谱探测精度,其在轨工作时要保持在-5℃的温度水平。就是这一简单的条件变化,让科研人员付出巨大努力。在载荷初样、正样研制最紧张的阶段,研究人员连续数月在低温室里工作,经常是户外30℃以上的高温,而在低温室内,却要穿着厚厚的羽绒服、冻着手坚持装调。
好容易练就了观测技能,碳卫星还面临着定标难题。二氧化碳探测仪定标系统负责人蔺超介绍,定标技术是确保光谱仪器最终实现精度的关键技术,为保证光谱数据的精准,必须在实验室和在轨工作时,对仪器的光谱性能和辐射性能进行精准标定。科研人员不但为二氧化碳探测仪量身特制了真空定标系统,还利用可调谐激光器和波长及搭建自动化定标系统,大幅提高了实验室定标的效率,使仪器的定标周期较美国的碳卫星OCO-2大幅缩短。
为让二氧化碳浓度探测更加精准,科研人员还给碳卫星装上了另一台载荷——多谱段云与气溶胶探测仪可以测量云、大气颗粒物等辅助信息,为精确反演CO2浓度剔除干扰因素。
当然,云与气溶胶探测仪作用还不仅于此。据科技部国家遥感中心总工程师李加洪介绍,它还能够获取全球尺度的气溶胶数据,这不仅可以帮助气象学家提高天气预报的准确性,还可以为研究PM2.5等大气污染成因提供重要数据支撑。
此外,在科技部、中国科学院的共同组织下,碳卫星按照航天工程模式,组成了卫星、运载、发射场、测控、应用五大系统。
碳卫星发射运行后,科学数据将依托风云系列地面接收站资源完成数据下传。这些数据并不是直接可用的二氧化碳浓度分布,需要经过气象学家进行高精度的全球二氧化碳分布反演计算,才能最终成为全球二氧化碳观测数据产品并共享发布。
“相比以往气象卫星涉及的反演问题,碳卫星所涉及的是可见光和近红外谱段的反演问题,机理不同,难度加大。这需要考虑云与气溶胶、气压、温度、反照率等多因素的影响,重新设计全新的反演验证系统。”碳卫星首席应用科学家、国家卫星气象中心总工卢乃锰说。
碳卫星地面应用系统总设计师杨忠东告诉记者,“二氧化碳气体绝对含量少,要在大的噪音中找到如此小的量,非常难。为此,国内优势单位集中起来联合攻关,啃下了这块硬骨头,填补了国内技术空白。我们以物理模型为基础对大气化学成分二氧化碳的反演,进入了一个新领域”。
碳卫星肩负着巨大的使命进入太空探索,除了进行相关科学试验,更好地掌握二氧化碳的全球分布规律、机理,还有巨大的应用价值。“后期卫星传送的信息进行处理、加工、分享、服务时都会按照应用需求,与其他国家共享,同时有效指导我国的节能减排。”李加洪说。
(本文来源:经济日报)
网络转载
点赞
0
收藏
0
回复
举报
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
立即登录
点评
高级模式
本版积分规则
回帖并转播
回帖后跳转到最后一页
返回
首页
分类
资讯
发现
我的